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Kinetic grain model for sandpiles
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A numerical model for sandpiles is introduced, based on the motion of a single grain and its interaction with
a pile instead of the local stability criterion used in traditional models. The model sandpile reaches a stationary
state where the energy dissipation events are power law distributed, consistent with the hypothesis of self-
organized criticality. The distribution of particles dropping off the pile fits a stretched-exponential distribution
as observed in inertia dominated experiments. Both distributions exhibit a finite-size data collapse, indicating
that the activity is restricted to a thin zone along the surf8&063-651X96)00806-9

PACS numbes): 64.60.Ht, 02.50.Ey, 05.4@, 05.70.Ln

[. INTRODUCTION cellular model, in which grains are dropped above one end of
the pile and gain kinetic energy while bouncing down, trans-
Sandpiles have been proposed as the canonical examgksring energy to particles in the pile. The model displays
of slowly driven dissipative systems. As grains of sand arenany of the visual features observed in re@ne-
added to a pile, the system is driven to a stationary, criticaflimensional piles of rice [12]. The energy dissipation is
state, where the addition of single grains leads to avalanchd¥wer law distributed, with a finite-size cutoff that scales
of all sizes. In model sandpiles the events are power lawVith the system size, indicating a thin, active zone along the
distributed, analogous to the behavior near the critical poingurface.
in equilibrium systems. However, sandpiles organize into a
critical state without any explicit tuning of parameters. The Il. DESCRIPTION OF THE MODEL
notion of self-organized criticalitySOQ [1,2] was proposed
to describe this inherent tuning to criticality and describe In the one-dimensional model, grains are represented as
phenomena as diverse as earthqudB&sevolution[4], and ~ square particles placed at integer positionsThe pile is
front dynamics[5]. defined as a series of heightgi), the number of square
The dynamics of traditional sandpile models have beerparticles stacked at positidn A closed boundary condition
based on local stability criteria within the pil&,2,6—1Q. In is applied at position 0, representing a sidewall, and the sys-
the cellular automaton model of Bak, Tang, and Wiesenfeldem is open at positiot., representing the outlet. In each
[1,2] grains of sand were added at random positions on &ycle a grain is added next to the wall at a heightabove
discrete lattice. If the local slope exceeded a threshold valughe top of the pile. The particle slides down the pile obeying
a fixed number of grains was redistributed to the neighboringimple rules: It moves down until the pile is directly below it
positions. The redistribution process was iterated until ally=h(i)+1], gaining one unit of kinetic energy for each
local slopes were below the threshold. In more than one disite it moves down. It then collides with the pile parti¢é
mension this model produced power law probability distri-h(i)], transferring some energs to this particle. If it still
butions of the avalanche sizes, measured as the number b&s a kinetic energy larger than zero, it continues horizon-
redistributions. Even though the model has been modified ttally in the direction of motion, repeating the process above.
include experimental observations such as inertia eff@jts Otherwise it is left a stationary part of the pile. A particle
and varying local slopeElQ], it is still essentially the local moves until it loses all its kinetic energy in a local minimum,
slope that determines whether an avalanche will occur. Hower escapes off the open boundary. The process is repeated for
ever, a characteristic of surface flow in granular materials isil particles that have received collisional energy in sequence
that the pile is both the medium for and a result of the flow.of increasingheight, in order to avoid possible ambiguities
A strong coupling between flow, dissipation, and the strucdin grain placement and collision sequences. A newly trig-
ture of the pile should therefore be included. Recentlygered particle is moved as if it came from above with the
Bouchaudet al. [11] introduced a model with a coupling energy gained in the collision, though in order to start mov-
between a field of moving grains and the pile surface, thouglng the particle has to overcome a trial collision with the
the dynamics of the model still depended on the local slopgarticle below it. If it loses all its energy in this first colli-
of the pile. sion, this energy is absorbed by the pile, reflecting the sta-
In this article we present a model for a pile of sand thatbility of the pile or static friction between the grains. No
considers the motion of individual grains. A local stability further grains are triggered by this energy. If a particle in the
criterion is not assumed, but will emerge as the result of theile does not have a grain immediately below it, it will also
frictional interactions. Ideally, the model should be based orstart falling. When all particles have stopped, a new grain is
molecular-dynamics-type simulations of intergrain contactsdropped. Figure 1 illustrates the basic principles of the
but since we here are interested in the scaling limits and neesiodel.
to study large systems for long times, the large amount of The parameters of this model are the system kiz¢he
CPU time needed rules out this approach. Thus we apply height above the pilég, that is, the initial energy when the
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FIG. 1. Examples to illustrate the collision rulds) A particle i \
is dropped three units above the top of the pile and stops in a local \

minimum. TheX shows where it has tried to transfer energy. The \ .
particles marked witli] surpass the static friction and start moving. | \\
(b) The first of the triggered particles stops at the same height; no i
new particles are initiatedc) The second triggered particle moves |

down one unit.

FIG. 2. Two successive pile profiles are shown in the same
particle first hits the pile, ana;, the transferred energy, figure. The black regions represent grains that have been removed
given by a random distribution. Herg is uniformly distrib-  in an avalanche, the gray areas denote regions of added grains. A
uted over a range of possible outconfesFor example, for single avalanche therefore consists of transport along the whole
the distributionR={0,1,2, the possibles; values are 0, 1, surface. The pictures are fdr=200 and R={0,1,2.3.4; (a
and 2 with probability 1/3. We will call a choice of transfer $=0.4Bmax. (0) $=0.025.
distribution (R) a friction rule.

We measure the response of the pile to the addition of
single grain in terms of its avalanches. Adding a grain add .he sequence has strpctgre over many scales, but does not
potential energy to the system, which is dissipated througfiSPiay any clear periodicity. To analyze the process we

friction as the grain slides down the pile. An avalanche is thés't_Udy the probability densiti(s,L) f'or an ava'a"‘?he of size
size of the energy dissipation following the addition of a S in asystem of length. (P(s,L)dsis the probability for an

grain. This is measured as the height moved downward by affvalanche in the ranggs,s+ds].) Figure 4a shows

the particles during an avalanche, the loss in potential ent(S:L) for @ R={0,1; model fo[giﬁerentL values. It be-
ergy, minus the kinetic energy transferred out of the syster)@ves as a power la®(s,L)~s"“ for small values ofs,
(Each particle may still have some energy when it leaves th#ith @=1.55=0.05 for largeL, but deviates for large. The
system. We term this quantitys, the avalanche size. The deV|at|(_)ns scale_ Wlth _system size as shown_ by the data col-
number of grains transferred out of the system during a@PSe in the finite-size scaling plot in Fig.(4. Thus

avalanche isl, the drop number. P(s,L) can be expressed as

f the energy dissipatios within the pile is shown in Fig. 3.

P(s,L)=L Pg(sL™") (s,L>1). 1)
Il RESULTS If we also incorporate the smadlbehavior, we propose
A few simple examples of friction rules illustrates the

model. If the model does not dissipate any energy, that is, 0, S<So
e;=0, a single grain will fall all the way through, gaining P(s,L)=1¢ f(s), Sp<S<S; 2
energy equall to the difference in height of_ the start and the L Ag(sL™?), sL>1,
outlet. The pile will not be modified. Allowing the grain to
dissipate 1 on each step=1, a single grain added with an

initial height hy greater than 1 will also run all the way 0.50F ' ’ ' ‘
through, but its energy will not increase. The pile will still 0405_ F
not be modified. Applying a deterministic modgk E from B E
a flat pile causes the pile to build up indefinitely, unless the ¥ 0‘305 E
initial energy scales with the system size. But a stationary E : E
configuration of the pile exists for all choices Bf in which @ 020k 3
a single grain runs through the whole system without gaining
energy. To get an interesting interplay between the pile and 0.10F 3
the particles, randomness must be added to the energy trans- U im | 1 “ t m 3
fer. We will now pursue such models. 0.00 LIl li, Ll fditn L L
For the simplest cas®&={0,1}, the dynamics becomes 0 2000 4000 t 6000 8000 10000

more complicated. The model displays a complex, changing

surface, similar in appearance to a pile of sand. The pile k|G, 3. Time sequence of energy dissipation events for a system
builds up until it reaches a stationary state, where the addixith R={0,1} andL=200. The sequence shows structure on sev-
tion of a grain leads to redistributions of grains along theeral scales, though no clear periodicity is evident. Only a small
surface. Examples of the surface shapes and the redistribportion of the total data set (1@vents is shown and the events are
tions are shown in Fig. 2 foR={0,1,2,3. A time sequence scaled with the largest avalanche in the whole simulation.
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1013 . . : i FIG. 5. Width of the pileAh/L as a function of the system size
_ o) ] L. The curve is consistent with a power-law behavioh~LX,
10 h ] where y=0.35£0.02.
1007 1
4
“ 5 where the first term is a number and the second term is
’qu 107 ] dominated by the lower limit, since<<2. The resulting scal-
-4 i ] ing relation isv—B—v(1—a)=0. We observe that the
100} . found v and 8 gives a=1.57, which is consistent with the
i ] measured value ak.
1071 , . . . ] The energy of the largest avalancB&~L" corresponds
1010 108 10 0% 1027 1 to the energy of the particles in a zone of thicknéssiong
o235 the length of the surface. The whole pile has a potential

S . . energy that scales ds® and a zone of thicknesg has a
FIG. 4. (a) The avalanche distribution functid®(s,L) is plotted potential energy scaling ﬁ_z_ The measured value ofis
for R:{O,l} forL= 100,200,400,800,1600, and 3200. The data arqherefore consistent with a zone of W|dm’ LX, X= 0.35.
for 10" avalanches after a transient time of' Ivalanches(b) A The width of the active zone was also measured directly in
finite-size scaling plotP(s,L) is plotted with rescaled axes to show the simulations. For a pile of side Ah(i;L) is the standard
a functional dependence accordingRés,L)=L""g(sL""). The  yeviation of the height at position=1,2, . ..,L andAh is
exponents3=3.7 andv=2.35 give the best possible data collapse the average oveir. Figure 5 shows the scaling @th with
for large L ands. The exponent in the straight line section is L. The plot sugéests a power-law relatignh~LY, with
=—1.55+0.05. ) 7
“ x=0.35+£0.02. We also observe that the scaling argument
] s above shows that fax=3/2, =3 andv=2. This produces
whereg(x) is a power lawx™“ with a cutoff for largex. 5 significantly poorer data collapse and would also imply a

Since the smallest avalanchehs, s, is identified asho.  zone of constant width, inconsistent with the observed be-
The plots in Fig. 4 show that all distributions deviate from pavior.
the power laws™* for s<s;, wheres;=20. This behavior Though the large avalanches are rare, their contribution

and the value o$; are the same for all model& #1) and  dominates the energy dissipation in the system, as is the case
independent of, since only the large avalanches detect thefor any distribution with an exponent less than 2. We also
size of the system. It was therefore not possible to obtain @hserve that the distributior(s,L) display a large event
simultaneous data COIIapse of both the |arge and small ava"bump”: For |arge avalanches the curve turns S||ght|y above
lanches. This does, however, represent the complete scalifige straight line of the power-law behavior before falling off.
behavior and a multifractal analysis will not give more infor- This is interpreted as a finite-size effect and is a part of the
mation. finite-size cutoff that scales with the system size.

For larger avalanches, the scaling expongss3.7 and Only some of the avalanches result in grains dropping off
v=2.35 were found to give the best data collagee large  the edge of the system. Figure 6 shows the probability of
L). Several scaling relations are imposed on the system. Th&,ch drop events as a function of system dizeThe time
average dissipated energy must on average be equal to tgequence of drop eventf shown in Fig. 7, also shows
input energyE;,. Since the variation with system sitein  structure over several scales and no evident periodicity. The
the angle of reposé® is small and the height of the pile is probability distribution for dropg(d,L) is not a power law
h=Ltan(f), the input energy isEj,=Ltan(f)+ho. Eiy  over any range, as evident from FigaB Notice that this is
therefore scales with sincehy<L and is independent on a conditional probability density, given that a drop occurs.
L. This implies that 2— =1 [12]. Normalization of the  Since the conditional probabilities are normalized, the scal-
probability density requires that ing relation 2»'—B'=0, which follows since(d)~L°, is

not valid. But the relatior3’=»" holds as a result of nor-
. . . malization since the data collapse is obtained both in the
J’ P(s,L)ds=1=f 1f(s)dS+j L=Bg(sL")ds, Igr_ge Qnd small value limit and the scaling f_unctlon has a
0 So s1 finite integral. The larger drops are consistent with a
3 stretched-exponential distribution
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FIG. 6. Probability of a drop ever®(d>0,L) as a function of
system sizeL. The probability decreases with system size. Most
events in the system are therefore internal events that do not reach
the edge of the system. The curve representsR(ft>0,L)~L" to
the points, withy=—1.3=0.05.

P(d,L)=AL A'exd —a(d/L”)?] for d,L>1 (4)

and scale with the system size as shown in F{g).8his is

in very good agreement with a recent reanaly4i3] of ex-
perimental result$14,15 by Feder showing that stretched-
exponential distributions give an excellent fit. The scaling
collapse in Fig. &) indicates that the largest drop scales as
Lx*1 consistent with the dismantling of a zone of width
along the surface. The drop data are also consistent with a
pure exponential distribution, though the fit is slightly better
for the stretched-exponential distribution.

Changing the other parameters of the model does not have
significant effect on the statistics. The behavior of the model
is not affected by changes in the initial energy of the grains
hyg. The same statistics are also observed if the amount of
energy transferred out of the system is not subtracted.
Though increasing the friction for dissipation rules of the
form R={0,1,... k}, decreases the influence of the large
event bump, the exponents of the distribution and the finite-
size scaling data collapses remain the same. However, for
higher values ok, the pile built up a steeper slope and the
fluctuations in the pile increased. Other types of friction rules
did also not change the behavior significantly.

Pd,L)L 135

0.2

0.4 0.6 0.8

( dL-1.35)O.8

FIG. 8. Finite-size plot of the normalized conditional probability

density for a dropd, P(d,L)=p(d,L|d>0), for a model with
0.40¢ ' ‘ ' ‘ ] R={0,1} andL =100,200,400,800,1600, and 3200. The exponents

B'=1.35+0.05 andv’ = 1.35+ 0.05 produce the best data collapse.
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FIG. 7. Time sequence of drop everdsfor a system with

0.305— - The distribution is not a power law in any regit® and(b), but fits

well to a stretched exponential for large(c).

The value of the exponent is close to the mean-field

values found from the theory of branching proceg4€s17.

The model can be approximated by a branching process if
grains move down the surface with constant velocity, con-
stant probability to stop, and to knock loose other grains and
if changes in the pile surface are ignored. The dissipated
energy would then correspond to the length of a branched
tree, starting at the top with separate branches for each acti-

R={0,1} and L=200. The sequence shows structure on severavated particle16]. The interesting part in our model is that
scales, though no clear periodicity is evident. Only a small portiorthe system organizes itself into the critical state and that
of the total data set is shown and the events are scaled with tHdere is a strong coupling both with the pile and the history

largest drop in the whole simulation.

of the grains, since the probability of a grain stopping de-
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pends on its kinetic energy, which is determined by its prethe dynamics is restricted to a zone of thickngssL %3

vious motion. along the surface of the pile. This is confirmed by direct
measurement of the width as a function ol in the simu-
IV. CONCLUSION lations.

) ) According to the hypothesis of SOC, the duration of

_The model represents a simple way to describe the comsyents should also be power law distributed. The presented
plicated dynamics in a pile of sand. It has the same type Ofyodel does not have any natural time scale and the ava-
intermittent behavior with scaling, power-law probability janche lifetimes therefore cannot be discussed. However,
distributions as observed in sandpile automia@®,7), con-  ¢orrelations in the sequence of events will be addressed later.
nects with the mean-field theory, and is consistent with exThe model displays intriguingly complex, critical behavior in
perimental results. It does not contain any explicit details ofye dimension, but a further development of a two-
local stability; the behavior of the pile is determined by ki- gimensional model would also be of interest, as well as in-
netic rules for grain-pile interaction. Independent of the de+rgqycing a difference between static and dynamic friction,
tails of the grain-pile frictional interactions, the same type ofas jndeed is present in real granular materials.
behavior is observed, though the inclination of the pile and
the avalanche sizes vary.
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