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A numerical model for sandpiles is introduced, based on the motion of a single grain and its interaction with
a pile instead of the local stability criterion used in traditional models. The model sandpile reaches a stationary
state where the energy dissipation events are power law distributed, consistent with the hypothesis of self-
organized criticality. The distribution of particles dropping off the pile fits a stretched-exponential distribution
as observed in inertia dominated experiments. Both distributions exhibit a finite-size data collapse, indicating
that the activity is restricted to a thin zone along the surface.@S1063-651X~96!00806-9#

PACS number~s!: 64.60.Ht, 02.50.Ey, 05.40.1j, 05.70.Ln

I. INTRODUCTION

Sandpiles have been proposed as the canonical example
of slowly driven dissipative systems. As grains of sand are
added to a pile, the system is driven to a stationary, critical
state, where the addition of single grains leads to avalanches
of all sizes. In model sandpiles the events are power law
distributed, analogous to the behavior near the critical point
in equilibrium systems. However, sandpiles organize into a
critical state without any explicit tuning of parameters. The
notion of self-organized criticality~SOC! @1,2# was proposed
to describe this inherent tuning to criticality and describe
phenomena as diverse as earthquakes@3#, evolution@4#, and
front dynamics@5#.

The dynamics of traditional sandpile models have been
based on local stability criteria within the pile@1,2,6–10#. In
the cellular automaton model of Bak, Tang, and Wiesenfeld
@1,2# grains of sand were added at random positions on a
discrete lattice. If the local slope exceeded a threshold value,
a fixed number of grains was redistributed to the neighboring
positions. The redistribution process was iterated until all
local slopes were below the threshold. In more than one di-
mension this model produced power law probability distri-
butions of the avalanche sizes, measured as the number of
redistributions. Even though the model has been modified to
include experimental observations such as inertia effects@9#
and varying local slopes@10#, it is still essentially the local
slope that determines whether an avalanche will occur. How-
ever, a characteristic of surface flow in granular materials is
that the pile is both the medium for and a result of the flow.
A strong coupling between flow, dissipation, and the struc-
ture of the pile should therefore be included. Recently,
Bouchaudet al. @11# introduced a model with a coupling
between a field of moving grains and the pile surface, though
the dynamics of the model still depended on the local slope
of the pile.

In this article we present a model for a pile of sand that
considers the motion of individual grains. A local stability
criterion is not assumed, but will emerge as the result of the
frictional interactions. Ideally, the model should be based on
molecular-dynamics-type simulations of intergrain contacts,
but since we here are interested in the scaling limits and need
to study large systems for long times, the large amount of
CPU time needed rules out this approach. Thus we apply a

cellular model, in which grains are dropped above one end of
the pile and gain kinetic energy while bouncing down, trans-
ferring energy to particles in the pile. The model displays
many of the visual features observed in real~one-
dimensional! piles of rice @12#. The energy dissipation is
power law distributed, with a finite-size cutoff that scales
with the system size, indicating a thin, active zone along the
surface.

II. DESCRIPTION OF THE MODEL

In the one-dimensional model, grains are represented as
square particles placed at integer positionsi . The pile is
defined as a series of heightsh( i ), the number of square
particles stacked at positioni . A closed boundary condition
is applied at position 0, representing a sidewall, and the sys-
tem is open at positionL, representing the outlet. In each
cycle a grain is added next to the wall at a heighth0 above
the top of the pile. The particle slides down the pile obeying
simple rules: It moves down until the pile is directly below it
@y5h( i )11#, gaining one unit of kinetic energy for each
site it moves down. It then collides with the pile particle@at
h( i )#, transferring some energyet to this particle. If it still
has a kinetic energy larger than zero, it continues horizon-
tally in the direction of motion, repeating the process above.
Otherwise it is left a stationary part of the pile. A particle
moves until it loses all its kinetic energy in a local minimum,
or escapes off the open boundary. The process is repeated for
all particles that have received collisional energy in sequence
of increasingheight, in order to avoid possible ambiguities
in grain placement and collision sequences. A newly trig-
gered particle is moved as if it came from above with the
energy gained in the collision, though in order to start mov-
ing the particle has to overcome a trial collision with the
particle below it. If it loses all its energy in this first colli-
sion, this energy is absorbed by the pile, reflecting the sta-
bility of the pile or static friction between the grains. No
further grains are triggered by this energy. If a particle in the
pile does not have a grain immediately below it, it will also
start falling. When all particles have stopped, a new grain is
dropped. Figure 1 illustrates the basic principles of the
model.

The parameters of this model are the system sizeL, the
height above the pileh0 , that is, the initial energy when the
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particle first hits the pile, andet , the transferred energy,
given by a random distribution. Hereet is uniformly distrib-
uted over a range of possible outcomesR. For example, for
the distributionR5$0,1,2%, the possibleet values are 0, 1,
and 2 with probability 1/3. We will call a choice of transfer
distribution (R) a friction rule.

We measure the response of the pile to the addition of a
single grain in terms of its avalanches. Adding a grain adds
potential energy to the system, which is dissipated through
friction as the grain slides down the pile. An avalanche is the
size of the energy dissipation following the addition of a
grain. This is measured as the height moved downward by all
the particles during an avalanche, the loss in potential en-
ergy, minus the kinetic energy transferred out of the system.
~Each particle may still have some energy when it leaves the
system.! We term this quantitys, the avalanche size. The
number of grains transferred out of the system during an
avalanche isd, the drop number.

III. RESULTS

A few simple examples of friction rules illustrates the
model. If the model does not dissipate any energy, that is,
et50, a single grain will fall all the way through, gaining
energy equal to the difference in height of the start and the
outlet. The pile will not be modified. Allowing the grain to
dissipate 1 on each stepet51, a single grain added with an
initial height h0 greater than 1 will also run all the way
through, but its energy will not increase. The pile will still
not be modified. Applying a deterministic modelet5E from
a flat pile causes the pile to build up indefinitely, unless the
initial energy scales with the system size. But a stationary
configuration of the pile exists for all choices ofE, in which
a single grain runs through the whole system without gaining
energy. To get an interesting interplay between the pile and
the particles, randomness must be added to the energy trans-
fer. We will now pursue such models.

For the simplest caseR5$0,1%, the dynamics becomes
more complicated. The model displays a complex, changing
surface, similar in appearance to a pile of sand. The pile
builds up until it reaches a stationary state, where the addi-
tion of a grain leads to redistributions of grains along the
surface. Examples of the surface shapes and the redistribu-
tions are shown in Fig. 2 forR5$0,1,2,3%. A time sequence

of the energy dissipations within the pile is shown in Fig. 3.
The sequence has structure over many scales, but does not
display any clear periodicity. To analyze the process we
study the probability densityP(s,L) for an avalanche of size
s in a system of lengthL. „P(s,L)ds is the probability for an
avalanche in the range@s,s1ds#.… Figure 4~a! shows
P(s,L) for a R5$0,1% model for differentL values. It be-
haves as a power lawP(s,L);s2a for small values ofs,
with a51.5560.05 for largeL, but deviates for larges. The
deviations scale with system size as shown by the data col-
lapse in the finite-size scaling plot in Fig. 4~b!. Thus
P(s,L) can be expressed as

P~s,L !5L2bg~sL2n! ~s,L@1!. ~1!

If we also incorporate the small-s behavior, we propose

P~s,L !5H 0, s,s0

f ~s!, s0,s,s1

L2bg~sL2n!, s,L@1,

~2!

FIG. 1. Examples to illustrate the collision rules.~a! A particle
is dropped three units above the top of the pile and stops in a local
minimum. The3 shows where it has tried to transfer energy. The
particles marked withh surpass the static friction and start moving.
~b! The first of the triggered particles stops at the same height; no
new particles are initiated.~c! The second triggered particle moves
down one unit.

FIG. 2. Two successive pile profiles are shown in the same
figure. The black regions represent grains that have been removed
in an avalanche, the gray areas denote regions of added grains. A
single avalanche therefore consists of transport along the whole
surface. The pictures are forL5200 andR5$0,1,2,3,4%; ~a!
s50.43smax. ~b! s50.02smax.

FIG. 3. Time sequence of energy dissipation events for a system
with R5$0,1% andL5200. The sequence shows structure on sev-
eral scales, though no clear periodicity is evident. Only a small
portion of the total data set (107 events! is shown and the events are
scaled with the largest avalanche in the whole simulation.
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whereg(x) is a power lawx2a with a cutoff for largex.
Since the smallest avalanche ish0 , s0 is identified ash0 .
The plots in Fig. 4 show that all distributions deviate from
the power laws2a for s,s1 , wheres1.20. This behavior
and the value ofs1 are the same for all models (L@1) and
independent ofL, since only the large avalanches detect the
size of the system. It was therefore not possible to obtain a
simultaneous data collapse of both the large and small ava-
lanches. This does, however, represent the complete scaling
behavior and a multifractal analysis will not give more infor-
mation.

For larger avalanches, the scaling exponentsb53.7 and
n52.35 were found to give the best data collapse~for large
L). Several scaling relations are imposed on the system. The
average dissipated energy must on average be equal to the
input energyEin . Since the variation with system sizeL in
the angle of reposeu is small and the height of the pile is
h5Ltan(u), the input energy isEin5Ltan(u)1h0 . Ein
therefore scales withL sinceh0!L and is independent on
L. This implies that 2n2b51 @12#. Normalization of the
probability density requires that

E
0

`

P~s,L !ds515E
s0

s1
f ~s!ds1E

s1

`

L2bg~sL2n!ds,

~3!

where the first term is a number and the second term is
dominated by the lower limit, sincea,2. The resulting scal-
ing relation is n2b2n(12a)50. We observe that the
found n andb givesa51.57, which is consistent with the
measured value ofa.

The energy of the largest avalancheE!;Ln corresponds
to the energy of the particles in a zone of thicknessj along
the length of the surface. The whole pile has a potential
energy that scales asL3 and a zone of thicknessj has a
potential energy scaling asjL2. The measured value ofn is
therefore consistent with a zone of widthj;Lx, x50.35.
The width of the active zone was also measured directly in
the simulations. For a pile of sizeL, nh( i ;L) is the standard
deviation of the height at positioni51,2, . . . ,L andnh is
the average overi . Figure 5 shows the scaling ofnh with
L. The plot suggests a power-law relationnh;Lx, with
x50.3560.02. We also observe that the scaling argument
above shows that fora53/2, b53 andn52. This produces
a significantly poorer data collapse and would also imply a
zone of constant width, inconsistent with the observed be-
havior.

Though the large avalanches are rare, their contribution
dominates the energy dissipation in the system, as is the case
for any distribution with an exponent less than 2. We also
observe that the distributionsP(s,L) display a large event
‘‘bump’’: For large avalanches the curve turns slightly above
the straight line of the power-law behavior before falling off.
This is interpreted as a finite-size effect and is a part of the
finite-size cutoff that scales with the system size.

Only some of the avalanches result in grains dropping off
the edge of the system. Figure 6 shows the probability of
such drop events as a function of system sizeL. The time
sequence of drop eventsd, shown in Fig. 7, also shows
structure over several scales and no evident periodicity. The
probability distribution for dropsP(d,L) is not a power law
over any range, as evident from Fig. 8~a!. Notice that this is
a conditional probability density, given that a drop occurs.
Since the conditional probabilities are normalized, the scal-
ing relation 2n82b850, which follows sincê d&;L0, is
not valid. But the relationb85n8 holds as a result of nor-
malization since the data collapse is obtained both in the
large and small value limit and the scaling function has a
finite integral. The larger drops are consistent with a
stretched-exponential distribution

FIG. 4. ~a! The avalanche distribution functionP(s,L) is plotted
for R5$0,1% for L5100,200,400,800,1600, and 3200. The data are
for 107 avalanches after a transient time of 107 avalanches.~b! A
finite-size scaling plot:P(s,L) is plotted with rescaled axes to show
a functional dependence according toP(s,L)5L2bg(sL2n). The
exponentsb53.7 andn52.35 give the best possible data collapse
for large L and s. The exponent in the straight line section is
a521.5560.05.

FIG. 5. Width of the pilenh/L as a function of the system size
L. The curve is consistent with a power-law behaviornh;Lx,
wherex50.3560.02.
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P~d,L !5AL2b8exp@2a~d/Ln8!g# for d,L@1 ~4!

and scale with the system size as shown in Fig. 8~c!. This is
in very good agreement with a recent reanalysis@13# of ex-
perimental results@14,15# by Feder showing that stretched-
exponential distributions give an excellent fit. The scaling
collapse in Fig. 8~b! indicates that the largest drop scales as
Lx11, consistent with the dismantling of a zone of widthj
along the surface. The drop data are also consistent with a
pure exponential distribution, though the fit is slightly better
for the stretched-exponential distribution.

Changing the other parameters of the model does not have
significant effect on the statistics. The behavior of the model
is not affected by changes in the initial energy of the grains
h0 . The same statistics are also observed if the amount of
energy transferred out of the system is not subtracted.
Though increasing the friction for dissipation rules of the
form R5$0,1, . . . ,k%, decreases the influence of the large
event bump, the exponents of the distribution and the finite-
size scaling data collapses remain the same. However, for
higher values ofk, the pile built up a steeper slope and the
fluctuations in the pile increased. Other types of friction rules
did also not change the behavior significantly.

The value of the exponenta is close to the mean-field
values found from the theory of branching processes@16,17#.
The model can be approximated by a branching process if
grains move down the surface with constant velocity, con-
stant probability to stop, and to knock loose other grains and
if changes in the pile surface are ignored. The dissipated
energy would then correspond to the length of a branched
tree, starting at the top with separate branches for each acti-
vated particle@16#. The interesting part in our model is that
the system organizes itself into the critical state and that
there is a strong coupling both with the pile and the history
of the grains, since the probability of a grain stopping de-

FIG. 6. Probability of a drop eventP(d.0,L) as a function of
system sizeL. The probability decreases with system size. Most
events in the system are therefore internal events that do not reach
the edge of the system. The curve represents a fitP(d.0,L);Lg to
the points, withg521.360.05.

FIG. 7. Time sequence of drop eventsd for a system with
R5$0,1% and L5200. The sequence shows structure on several
scales, though no clear periodicity is evident. Only a small portion
of the total data set is shown and the events are scaled with the
largest drop in the whole simulation.

FIG. 8. Finite-size plot of the normalized conditional probability
density for a dropd, P(d,L)5p(d,Lud.0), for a model with
R5$0,1% andL5100,200,400,800,1600, and 3200. The exponents
b851.3560.05 andn851.3560.05 produce the best data collapse.
The distribution is not a power law in any region~a! and~b!, but fits
well to a stretched exponential for larged ~c!.
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pends on its kinetic energy, which is determined by its pre-
vious motion.

IV. CONCLUSION

The model represents a simple way to describe the com-
plicated dynamics in a pile of sand. It has the same type of
intermittent behavior with scaling, power-law probability
distributions as observed in sandpile automata@2,6,7#, con-
nects with the mean-field theory, and is consistent with ex-
perimental results. It does not contain any explicit details of
local stability; the behavior of the pile is determined by ki-
netic rules for grain-pile interaction. Independent of the de-
tails of the grain-pile frictional interactions, the same type of
behavior is observed, though the inclination of the pile and
the avalanche sizes vary.

We observe a power law for the probability density of
avalanches, consistent with the hypothesis of SOC, even
though the total energy dissipation is dominated by rare,
system-spanning events. However, the drop numbers are
consistent with stretched-exponential distributions, indicat-
ing a characteristic drop size and in good correspondence
with a recent reanalysis of inertia dominated experiments.
We obtain a data collapse for both quantities, indicating that

the dynamics is restricted to a zone of thicknessj;L0.35

along the surface of the pile. This is confirmed by direct
measurement of the widthj as a function ofL in the simu-
lations.

According to the hypothesis of SOC, the duration of
events should also be power law distributed. The presented
model does not have any natural time scale and the ava-
lanche lifetimes therefore cannot be discussed. However,
correlations in the sequence of events will be addressed later.
The model displays intriguingly complex, critical behavior in
one dimension, but a further development of a two-
dimensional model would also be of interest, as well as in-
troducing a difference between static and dynamic friction,
as indeed is present in real granular materials.
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